943 reflections
69 parameters
H atoms: see below
$w = 1/[\sigma^2(F_o^2) + (0.0125P)^2]$
+ 4.788 <i>P</i>]
where $P = (F_o^2 + 2F_c^2)/3$

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	C C	U_{eq}
Ni	1/3	2/3	-1/3	0.0294 (2)
11	0	0	-0.42824 (2)	0.05254 (13)
12	0	0	-0.25984 (2)	0.05009 (12)
S	0.29182 (7)	0.41669(7)	-0.25930 (4)	0.0378(2)
0	0.3912(2)	0.5581(2)	-0.27545 (9)	0.0374 (4)
C1	0.3264 (4)	0.3198 (3)	-0.3153 (2)	0.0496 (8)
C2	0.3498 (4)	0.3834 (4)	-0.1833 (2)	0.0549 (9)

Table 2. Selected geometric parameters (Å, °)

NiO	2.077 (2)	S-O	1.521 (2)		
1111'	2.848 (1)	S-C1	1.784 (4)		
1112	3.342 (1)	S-C2	1.780 (4)		
$O-Ni-O^{n}$	92.37 (7)	OSC2	104.5 (2)		
$O^{nv}-Ni-O$	180	OSC1	106.0 (2)		
$O-Ni-O^{v}$	87.63 (7)	C1SC2	98.5 (2)		
$11^{1}-11-12$	180	NiOS	118.9 (1)		
Symmetry codes: (i) $-x$, $-y$, $-1 - z$; (ii) $-x + y$, $1 - x$, z ; (iv) $\frac{2}{3} - x$, $\frac{4}{3} - y$, $-\frac{2}{3} - z$; (v) $y - \frac{4}{3}$, $\frac{1}{3} - x + y$, $-\frac{2}{3} - z$.					

The structure was solved by direct methods and expanded using Fourier techniques. All H atoms were found in difference Fourier maps and refined isotropically.

Data collection: SMART (Siemens, 1996). Cell refinement: SMART and SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Siemens, 1994). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

This research was supported by grants from the National Natural Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1277). Services for accessing these data are described at the back of the journal.

References

- Dubler, E. & Linowsky, L. (1975). *Helv. Chim. Acta*, **58**, 2604–2609.Long, D.-L., Cui, Y., Chen, J.-T., Cheng, W.-D. & Huang, J.-S. (1998).*Polyhedron*, **17**, 3969–3975.
- Nichling, U., Moldenhauer, J., Ludwig, T., Schweitzer, D. & Strunz, W. (1996). Solid State Commun. 97, 837–842.
- Reibenspies, J. H. & Kim, J. S. (1996). Z. Kristallogr. 211, 418.
- Sæthre, L. J., Gropen, O. & Sletten, J. (1988). Acta Chem. Scand. Ser. A, 42, 16–26.
- Sheldrick, G. M. (1996). SADABS. Absorption Correction Program. University of Göttingen, Germany.
- Siemens (1994). SHELXTL. Release 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

- Tebbe, K. F. (1977). In *Homoatomic Rings, Chains and Macromolecules of Main Group Elements*, edited by A. L. Rheingold. New York: Elsevier.
- Truong, K. D., Grenier, P., Houde, D. & Bandrauk, A. D. (1993). Synth. Met. 57, 3968–3973.
- Wanka, S., Beckmann, D., Wasnitza, J., Balthes, E., Schweitzer, D., Strunz, W. & Keller, H. J. (1996). *Phys. Rev. B: Condens. Matter*, 53, 9301–9309.

Acta Cryst. (1999). C55, 341-343

Di- μ -iodo-1: $2\kappa^4 I$ -bis(quinoline)- $1\kappa N$, $2\kappa N$ -bis(triphenylphosphine)- $1\kappa P$, $2\kappa P$ -dicopper(I)

QIONG-HUA JIN," YU-XIAN WANG" AND XIU-LAN XIN"

^aDepartment of Chemistry, Capital Normal University, Beijing 100037, People's Republic of China, and ^bDepartment of Chemical Engineering, Beijing Institute of Light Industry, Beijing 100037, People's Republic of China. E-mail: jingh@mailhost.cnu.edu.cn

(Received 8 June 1998; accepted 12 October 1998)

Abstract

The title compound, $[CuI(PPh_3)(C_9H_7N)]_2$ or $[Cu_2I_2-(C_9H_7N)_2(C_{18}H_{15}P)_2]$, is an inversion-symmetric dimer with two Cu atoms each tetrahedrally coordinated to two I, one N and one P atom. The diamond-shaped central Cu_2I_2 group has longer I···I [4.351(1) Å] and shorter Cu···Cu distances [3.144(1) Å] than the X···X (X = Br, I) and Cu···Cu distances found in the related compounds $[CuBr(PPh_3)(C_9H_7N)]_2$ and [CuI- $(C_9H_7N)_2]_2$.

Comment

Recently, we obtained the group IB metal complexes $[CuBr(PPh_3)(C_9H_7N)]_2$ [(II); Jin, Long *et al.*, 1998] and $[CuI(PPh_3)(phen)]$ (Jin, Xin *et al.*, 1998), where phen is 1,10-phenanthroline, which have found use in our work on the synthesis of Mo(W)–Cu(Ag)–S compounds (Hou *et al.*, 1996). We report here the structure of another such Cu¹ complex, namely, $[CuI(PPh_3)(C_9H_7N)]_2$, (I).

Acta Crystallographica Section C ISSN 0108-2701 © 1999 The title compound consists of inversion-symmetric dimers with a diamond-shaped Cu_2I_2 group at the center. The Cu atom is coordinated to two I atoms, one N atom and one P atom in a distorted tetrahedral arrangement.

The I—Cu—I angle $[108.30(2)^{\circ}]$ in (I) is larger than the Br—Cu—Br angle $[95.83(2)^{\circ}]$ in (II) and the I—Cu—I angle $[102.4(1)^{\circ}]$ in $[CuI(C_9H_7N)_2]_2$, (III) (Rath *et al.*, 1986), while the Cu—I—Cu angle $[71.70(2)^{\circ}]$ in (I) is smaller than the Cu—Br—Cu angle $[84.17(2)^{\circ}]$ in (II) and the Cu—I—Cu angle $[77.6(1)^{\circ}]$ in (III). These trends in bond angles lead to a shorter Cu…Cu separation [3.144(1) Å] in (I) than in both (II) [3.414(1) Å] and (III) [3.364(5) Å], and to a longer I…I distance [4.351(1) Å] than the Br…Br distance [3.780(5) Å] in (II) and the I…I distance [4.188(2) Å]in (III).

The average Cu—I distance [2.683(9) Å] agrees well with the Cu—I distances [2.686(4) Å] found in similar dimeric molecules, *e.g.* (III).

The Cu—P [2.246 (6) Å] and Cu—N distances [2.097 (3) Å] are also in good agreement with values found in similar compounds containing P and N atoms, *e.g.* (II) [Cu—P 2.2160 (12) and Cu—N 2.065 (3) Å], [CuI(PPh₃)(phen)] [Cu—P 2.1977 (9), and Cu—N 2.071 (3) and 2.111 (3) Å; Jin, Xin *et al.*, 1998], [Cu₂Cl₂(4,4'-bipy)(PPh₃)₂] [Cu—P 2.199 (1) and Cu—N 2.057 (3) Å; Lu *et al.*, 1997], where 4,4'-bipy is 4,4'-bipyridine.

Fig. 1. View of the title complex, with displacement ellipsoids shown at the 30% probability level.

Experimental

 $[CuI(PPh_3)(C_9H_7N)]_2$ was obtained by the reaction of CuI and PPh₃ (molar ratio 1:2) in the presence of quinoline in DMF solution at 343 K. Yellow prismatic crystals were produced by slow evaporation of the solution.

Crystal data

 $\begin{bmatrix} Cu_2I_2(C_9H_7N)_2(C_{18}H_{15}P)_2 \end{bmatrix}$ $M_r = 1163.74$ Triclinic $P\overline{1}$ a = 9.304 (2) Å b = 10.9792 (13) Å c = 13.685 (3) Å $\alpha = 107.896 (10)^{\circ}$ $\beta = 107.812 (14)^{\circ}$ $\gamma = 96.383 (11)^{\circ}$ $V = 1233.7 (4) Å^{3}$ Z = 1 $D_x = 1.566 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$

Data collection

Siemens P4 diffractometer θ -2 θ scans Absorption correction: ψ scan (XEMP; Siemens, 1991) $T_{min} = 0.487, T_{max} = 0.671$ 5134 measured reflections 4263 independent reflections 3444 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.002$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.591 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.065$	$\Delta ho_{\rm min}$ = -0.487 e Å ⁻³
S = 1.023	Extinction correction:
4263 reflections	SHELXL93
282 parameters	Extinction coefficient:
H-atom parameters	0.0140 (6)
constrained	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2]$	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

I—Cu I—Cu ⁱ	2.6617 (6) 2.7059 (5)	Cu—N Cu—P	2.097 (3) 2.2466 (11)			
Cu—I—Cu ⁱ N—Cu—P N—Cu—I	71.70 (2) 117.20 (8) 106.25 (8) 114 70 (3)	$\begin{array}{l} N & - C u - I^{i} \\ P & - C u - I^{i} \\ I & - C u - I^{i} \end{array}$	103.46 (7) 106.07 (3) 108.30 (2)			
Symmetry code: (i) $1 - x, 2 - y, 2 - z$.						

All H atoms were placed geometrically and refined in riding mode with isotropic displacement parameters 20% greater than those of the parent atoms.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

We are grateful for the support of the Beijing Science and Technology Commission of China.

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 30 reflections $\theta = 5.62-14.75^{\circ}$ $\mu = 2.215$ mm⁻¹ T = 293 (2) K Prism $0.47 \times 0.30 \times 0.18$ mm Yellow

 $R_{\rm int} = 0.018$

 $k=-12\rightarrow 12$

 $l = -16 \rightarrow 15$

3 standard reflections

every 97 reflections

intensity decay: 2.43%

 $\theta_{\max} = 25^{\circ}$ $h = -1 \rightarrow 10$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1317). Services for accessing these data are described at the back of the journal.

References

- Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Hou, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.
- Jin, Q.-H., Long, D.-L., Wang, Y.-X. & Xin, X.-Q. (1998). Acta Cryst. C54, 948–949.
- Jin, Q.-H., Xin, X.-L., Dong, C.-J. & Zhu, H.-J. (1998). Acta Cryst. C54, 1087–1089.
- Lu, J., Crisci, G., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 5140-5141.
- Rath, N. P., Holt, E. M. & Tanimura, K. (1986). J. Chem. Soc. Dalton Trans. pp. 2303-2310.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1991). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 343-345

Poly[mercury(II)-µ-4,4'-bipyridine-di-µ-bromo]

Long Pan,^{*a*} Nengwu Zheng,^{*a*} Yonggang Wu,^{*a*} Shichun Wu^{*b*} and Xiaoying Huang^{*c*}

^aDepartment of Chemistry, University of Science & Technology of China, Hefei Anhui 230026, People's Republic of China, ^bNew Drug Research of Anhui Provincial Institute For Drug Control, Hefei Anhui 230061, People's Republic of China, and ^c Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China. E-mail: lpan@mail.ach.ustc. edu.cn

(Received 19 December 1997; accepted 1 May 1998)

Abstract

The title compound, $[HgBr_2(C_{10}H_8N_2)]_n$, was obtained by mixing equimolar ethanolic solutions of mercuric bromide and 4,4'-bipyridine (4,4'-bipy). The bipy ligand acts as a linear bifunctional bridge forming a planar $\{-[Hg(4,4'-bipy)]-\}_n$ belt in the direction of the *a* axis. The remaining mercury coordination sites are occupied by Br⁻ ions which link Hg centres in neighbouring belts *via* double bridges to form extended two-dimensional layers.

Comment

There has been significant interest recently in metal complexes containing 4,4'-bipyridine (4,4'-bipy). The rod-like rigidity of this ligand leads to metal complexes which are often extended solids with topological structures. Three types of polymer structure formed by 4,4'-bipy can be summarized as follows:

(i) each metal ion is connected by two bridging 4,4'-bipy ligands to form one-dimensional $[M(4,4'-bipy)]_n$ polymeric chains, for example, { $[Ni(4,4'-bipy)-(C_5H_9OS_2)_2]\cdot 2CCl_4\}_n$ (Gable *et al.*, 1985), $[Cd(4,4'-bipy)(C_4H_{17}OS_2)_2]_n$ (Abrahams *et al.*, 1990), $[Cu(4,4'-bipy)(H_2O)_2(ClO_4)_2]_n \cdot n(4,4'-bipy)$ (Chen *et al.*, 1996), $[Cu(4,4'-bipy)(2,2'-bipy)(ClO_4)_2]_n$ (Chen *et al.*, 1992) and $[Co(NCS)_2(H_2O)_2(4,4'-bipy)]\cdot (4,4'-bipy)$ (Lu *et al.*, 1997). In the last two of these, the one-dimensional chains are connected by hydrogen bonding involving uncoordinated 4,4'-bipy, resulting in a two-dimensional structure.

(ii) Mutually interpenetrating two-dimensional sheets of [Cu(4,4'-bipy)Cl] were synthesized by Yaghi & Li (1995) and two-dimensional layers were found in {[Cd- $(4,4'-bipy)_2$](NO₃)₂}_n (Fujita *et al.*, 1994) and [Co-(NCS)₂(4,4'-bipy)₂]·2[(CH₃CH₂)₂O] (Lu *et al.*, 1997), in which the metal ion was coordinated by four bridging 4,4'-bipy ligands. Infinite square-grid two-dimensional cationic sheets of composition [Cd(H₂O)₂-(4,4'-bipy)₂]²ⁿ⁺ were observed in [Cd(H₂O)₂(4,4'-bipy)₂]PF₆·2(4,4'-bipy)·4H₂O (Robson *et al.*, 1992).

(iii) Three-dimensional structures with super-diamondtype nets are observed in $[Cu(4,4'-bipy)_{1.5}]NO_{3}$ - $1.25H_2O$ (Yaghi & Li, 1995) and $[Cu(4,4'-bipy)_2(PF_6)]$ (MacGillivray *et al.*, 1994), the extent of interpenetration leaving extended channels through the structure. However, in $[Zn(4,4'-bipy)_2(SiF_6)]\cdot 2H_2O$ (Gable *et al.*, 1990), there are no accessible voids. Moreover, the complex $[Ag(4,4'-bipy)_2(CF_3SO_3)]_n$ (Carlucci *et al.*, 1994) is also of this type. Three-dimensional structures with large square channels are found in $[Zn(4,4'-bipy)_2(SiF_6)]_n$ -DMF (Subramanian & Zaworotko, 1995) and $[Zn_2(4,4'-bipy)(PO_3F)_2]$ (Halasyamani *et al.*, 1997). The threedimensional framework of $[Ag(4,4'-bipy)]NO_3$ (Robinson & Zaworotko, 1995) is assembled from T-shaped cationic building blocks.

The title compound, (I), belongs to type (ii). The Hg^{II} ion is coordinated by two N atoms from two different

4,4'-bipy ligands and by four Br^- ligands (Fig. 1). The N_2Br_4 coordination about mercury is close to octahedral (Table 2).